Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/271334
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Unraveling Heat Transport and Dissipation in Suspended MoSe2 from Bulk to Monolayer

AutorSaleta Reig, David CSIC ORCID; Varghese, Sebin CSIC ORCID; Farris, Roberta CSIC ORCID; Block, Alexander CSIC ORCID; Mehew, Jake D. CSIC ORCID; Hellman, Olle; Woźniak, Pawel; Sledzinska, Marianna CSIC ORCID; Sachat, Alexandros el CSIC ORCID; Chávez-Angel, Emigdio CSIC ORCID; Valenzuela, Sergio O. CSIC ORCID; Hulst, Niek F. van; Ordejón, Pablo CSIC ORCID; Zanolli, Zeila CSIC ORCID; Sotomayor Torres, C. M. CSIC ORCID; Verstraete, Matthieu J. CSIC ORCID; Tielrooij, Klaas-Jan CSIC ORCID
Fecha de publicación10-mar-2022
EditorJohn Wiley & Sons
CitaciónAdvanced Materials 34(10): 2108352 (2022)
ResumenUnderstanding heat flow in layered transition metal dichalcogenide (TMD) crystals is crucial for applications exploiting these materials. Despite significant efforts, several basic thermal transport properties of TMDs are currently not well understood, in particular how transport is affected by material thickness and the material's environment. This combined experimental–theoretical study establishes a unifying physical picture of the intrinsic lattice thermal conductivity of the representative TMD MoSe. Thermal conductivity measurements using Raman thermometry on a large set of clean, crystalline, suspended crystals with systematically varied thickness are combined with ab initio simulations with phonons at finite temperature. The results show that phonon dispersions and lifetimes change strongly with thickness, yet the thinnest TMD films exhibit an in-plane thermal conductivity that is only marginally smaller than that of bulk crystals. This is the result of compensating phonon contributions, in particular heat-carrying modes around ≈0.1 THz in (sub)nanometer thin films, with a surprisingly long mean free path of several micrometers. This behavior arises directly from the layered nature of the material. Furthermore, out-of-plane heat dissipation to air molecules is remarkably efficient, in particular for the thinnest crystals, increasing the apparent thermal conductivity of monolayer MoSe by an order of magnitude. These results are crucial for the design of (flexible) TMD-based (opto-)electronic applications.
Versión del editorhttp://doi.org/10.1002/adma.202108352
URIhttp://hdl.handle.net/10261/271334
DOI10.1002/adma.202108352
Identificadoresdoi: 10.1002/adma.202108352
issn: 1521-4095
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Unraveling_heat_transport_MoSe2.pdf2,39 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

13
checked on 07-may-2024

WEB OF SCIENCETM
Citations

10
checked on 27-feb-2024

Page view(s)

56
checked on 06-may-2024

Download(s)

43
checked on 06-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons