Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/265300
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Low-symmetry topological materials for large charge-to-spin interconversion: The case of transition metal dichalcogenide monolayers

AutorVila, Marc CSIC ORCID; Hsu, Chuang-Han; Garcia, Jose H. CSIC ORCID; Benítez, L. Antonio CSIC ORCID; Waintal, X.; Valenzuela, Sergio O. CSIC ORCID; Pereira, Vitor M.; Roche, Stephan CSIC ORCID
Palabras claveSpin hall effect
Topological materials
Transition metal dichalcogenides
Fecha de publicación30-dic-2021
EditorAmerican Physical Society
CitaciónPhysical Review Research 3(4): 043230 (2021)
ResumenThe spin polarization induced by the spin Hall effect (SHE) in thin films typically points out of the plane. This is rooted on the specific symmetries of traditionally studied systems, not in a fundamental constraint. Recently, experiments on few-layer MoTe2 and WTe2 showed that the reduced symmetry of these strong spin-orbit coupling materials enables a new form of canted spin Hall effect, characterized by concurrent in-plane and out-of-plane spin polarizations. Here, through quantum transport calculations on realistic device geometries, including disorder, we predict a very large gate-tunable SHE figure of merit λsθxy≈1-50 nm in MoTe2 and WTe2 monolayers that significantly exceeds values of conventional SHE materials. This stems from a concurrent long spin diffusion length (λs) and charge-to-spin interconversion efficiency as large as θxy≈80%, originating from momentum-invariant (persistent) spin textures together with large spin Berry curvature along the Fermi contour, respectively. Generalization to other materials and specific guidelines for unambiguous experimental confirmation are proposed, paving the way toward exploiting such phenomena in spintronic devices. These findings vividly emphasize how crystal symmetry and electronic topology can govern the intrinsic SHE and spin relaxation, and how they may be exploited to broaden the range and efficiency of spintronic materials and functionalities.
Versión del editorhttp://doi.org/10.1103/PhysRevResearch.3.043230
URIhttp://hdl.handle.net/10261/265300
DOI10.1103/PhysRevResearch.3.043230
Identificadoresdoi: 10.1103/PhysRevResearch.3.043230
issn: 2643-1564
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Low-symmetry_topological_materials_dichalcogenide_monolayers.pdf750,89 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

12
checked on 28-abr-2024

WEB OF SCIENCETM
Citations

10
checked on 24-feb-2024

Page view(s)

23
checked on 03-may-2024

Download(s)

47
checked on 03-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons