Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/264691
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorLazaro, Irene de-
dc.contributor.authorSharp, Paul S.-
dc.contributor.authorGurcan, Cansu-
dc.contributor.authorCeylan, Ahmet-
dc.contributor.authorStylianou, Maria-
dc.contributor.authorKisby, Thomas-
dc.contributor.authorChen, Yingxian-
dc.contributor.authorVranic, Sandra-
dc.contributor.authorBarr, Katharine-
dc.contributor.authorTaheri, Hadiseh-
dc.contributor.authorOzen, Asuman-
dc.contributor.authorBussy, Cyrill-
dc.contributor.authorYilmazer, Açelya-
dc.contributor.authorKostarelos, Kostas-
dc.date.accessioned2022-03-21T10:10:17Z-
dc.date.available2022-03-21T10:10:17Z-
dc.date.issued2021-10-09-
dc.identifierdoi: 10.1002/adtp.202000109-
dc.identifierissn: 2366-3987-
dc.identifier.citationAdvanced Therapeutics 4(1): 2000109 (2021)-
dc.identifier.urihttp://hdl.handle.net/10261/264691-
dc.description.abstractIts anatomical localization, a highly heterogeneous and drug-resistant tumor cell population and a “cold” immune microenvironment, all challenge the treatment of glioblastoma. Nanoscale drug delivery systems, including graphene oxide (GO) flakes, may circumvent some of these issues bypassing biological barriers, delivering multiple cargoes to impact several pathways simultaneously, or targeting the immune compartment. Here, the interactions of GO flakes with in vitro (U-87 MG three-dimensional spheroids, without stromal or immune compartments) and in vivo (U-87 MG orthotopic xenograft) models of glioblastoma are investigated. In vitro, GO flakes translocated deeply into the spheroids with little internalization in tumor cells. In vivo, intracranially administered GO also show extensive distribution throughout the tumor and demonstrate no impact on tumor growth and progression for the duration of the study. Internalization within tumor cells is also scarce, with the majority of flakes preferentially taken up by microglia/macrophages. The results indicate that GO flakes could offer deep and homogenous distribution throughout glioblastoma tumors and a means to target their myeloid compartment. Further studies are warranted to investigate the mechanisms of GO flakes transport within the tumor mass and their capacity to deliver bioactive cargoes but, ultimately, this information could inform the development of immunotherapies against glioblastoma.-
dc.description.sponsorshipK.K., P.S., S.V., and M.S. would like to acknowledge the United Kingdom Research and Innovation (UKRI) Engineering and Physical Sciences Research Council (EPSRC) for funding most of this work under the 2D-Health Programme Grant (EP/P00119X/1). K.K. and I.d.L. would also like to acknowledge the UKRI (EPSRC) for an International Centre-to-Centre grant (EP/S030719/1) between the University of Manchester and Harvard University that funded part of this work. T.K. would like to thank the UKRI (EPSRC and Medical Research Council, MRC) Center for Doctoral Training (CDT) in Regenerative Medicine (EP/L014904/1) for a funded PhD studentship. The authors would like to thank Dr. Marta Quintanilla and Dr. David Spiller for help with LSFM. The equipment at the University of Manchester Bioimaging and Genomic Technologies facilities used in this study were purchased with grants from the Biotechnology and Biological Sciences Research Council (BBSRC), Wellcome Trust, and the University of Manchester Strategic Fund. A.Y., C.G., and H.T. would like to thank the project “G-IMMUNOMICS” funded under the Joint Transnational Call (JTC) Graphene 2015. A.Y. is thankful to the Turkish Academy of Sciences (TUBA) for the financial support.-
dc.languageeng-
dc.publisherJohn Wiley & Sons-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleDeep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model-
dc.typeartículo-
dc.identifier.doi10.1002/adtp.202000109-
dc.relation.publisherversionhttp://doi.org/10.1002/adtp.202000109-
dc.date.updated2022-03-21T10:10:17Z-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderUK Research and Innovation-
dc.contributor.funderUniversity of Manchester-
dc.contributor.funderTurkish Academy of Sciences-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000770es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
Aparece en las colecciones: (CIN2) Artículos
Ficheros en este ítem:
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

17
checked on 21-may-2024

WEB OF SCIENCETM
Citations

11
checked on 27-feb-2024

Page view(s)

84
checked on 28-may-2024

Download(s)

30
checked on 28-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons