Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/260137
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Evidence of intra-binary shock emission from the redback pulsar PSR J1048+2339*

AutorZanon Miraval, A.; D'Avanzo, P.; Ridolfi, A.; Coti Zelati, Francesco CSIC ORCID ; Campana, Sergio; Tiburzi, Caterina; Martino, Domitilla de; Muñoz-Darias, T.; Bassa, C. G.; Zampieri, Elisa; Possenti, Alessia; Ambrosino, Filippo; Papitto, Alessandro CSIC ORCID; Baglio, Maria Cristina; Burgay, M.; Burtovoi, A.; MIchilli, D.; Ochner, Paolo; Zucca, Paolo
Palabras clavePulsars: individual: PSR J1048+2339
X-ray binaries
Stars: neutron
Techniques: spectroscopic
Fecha de publicación26-mar-2021
EditorEDP Sciences
CitaciónAstronomy & Astrophysics 649: A120 (2021)
ResumenWe present simultaneous multiwavelength observations of the 4.66 ms redback pulsar PSR J1048+2339. We performed phase-resolved spectroscopy with the Very Large Telescope (VLT) searching for signatures of a residual accretion disk or intra-binary shock emission, constraining the companion radial velocity semi-amplitude (K2), and estimating the neutron star mass (MNS). Using the FORS2-VLT intermediate-resolution spectra, we measured a companion velocity of 291 < K2 < 348 km s−1 and a binary mass ratio of 0.209 < q < 0.250. Combining our results for K2 and q, we constrained the mass of the neutron star and the companion to (1.0 < MNS < 1.6) sin−3 i M⊙ and (0.24 < M2 < 0.33) sin−3i M⊙, respectively, where i is the system inclination. The Doppler map of the Hα emission line exhibits a spot feature at the expected position of the companion star and an extended bright spot close to the inner Lagrangian point. We interpret this extended emission as the effect of an intra-binary shock originating from the interaction between the pulsar relativistic wind and the matter leaving the companion star. The mass loss from the secondary star could be either due to Roche-lobe overflow or to the ablation of its outer layer by the energetic pulsar wind. Contrastingly, we find no evidence for an accretion disk. We report on the results of the Sardinia Radio Telescope (SRT) and the Low-Frequency Array (LOFAR) telescope simultaneous radio observations at three different frequencies (150 MHz, 336 MHz, and 1400 MHz). No pulsed radio signal is found in our search. This is probably due to both scintillation and the presence of material expelled from the system which can cause the absorption of the radio signal at low frequencies. The confirmation of this hypothesis is given by another SRT observation (L-band) taken in 2019, in which a pulsed signal is detected. Finally, we report on an attempt to search for optical pulsations using IFI+Iqueye mounted at the 1.2 m Galileo telescope at the Asiago Observatory.
Versión del editorhttps://doi.org/10.1051/0004-6361/202040071
URIhttp://hdl.handle.net/10261/260137
DOI10.1051/0004-6361/202040071
Identificadoresdoi: 10.1051/0004-6361/202040071
issn: 1432-0746
Aparece en las colecciones: (ICE) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
intra-binary_shock.pdf9,95 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

39
checked on 21-may-2024

Download(s)

14
checked on 21-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.