Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/248449
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth

AutorPerera, Erick CSIC ORCID ; Rosell-Moll, Enrique CSIC ORCID; Martos-Sitcha, Juan Antonio CSIC ORCID; Naya-Català, Fernando CSIC ORCID; Simó-Mirabet, Paula CSIC ORCID; Calduch-Giner, Josep A. CSIC ORCID; Manchado, Manuel; Afonso, Juan Manuel; Pérez-Sánchez, Jaume CSIC ORCID
Palabras claveGrowth selection
Fasting weight loss
Critical speed
Maximum metabolic rate
Free-swimming behavior
Fecha de publicaciónjul-2021
EditorElsevier
CitaciónAquaculture Reports 20: 100645 (2021)
ResumenThree gilthead sea bream families representative of slow, intermediate and fast heritable growth in the Spanish PROGENSA® selection program were used to uncover the effects of such selection on energy partitioning through measurements of fasting weight loss, swimming performance and behavioral traits in one- and two-year-old fish. Firstly, selection for fast growth significantly increased fasting weight loss and decreased the hormonal ratio of circulating Igf-i/Gh in short-term fasting fish (17 days). This is indicative of a stronger negative energy balance that explains the reduced compensatory growth of fast-growing fish during the subsequent short-term refeeding period (7 days). Selection for fast growth also decreased the critical speed (Ucrit, 6–7 BL s−1) at which fish become exhausted in a swim tunnel respirometer. The maximum metabolic rate (MMR), defined as the maximum rate of oxygen consumption during forced exercise, was almost equal in all fish families though the peak was achieved at a lowest speed in the fast-growing family. Since circulating levels of lactate were also slightly decreased in free-swimming fish of this family group, it appears likely that the relative energy contribution of anaerobic metabolism to physical activity was lowered in genetically fast-growing fish. Selection for heritable growth also altered activity behavior because slow-growing families displayed an anticipatory food response associated with more pronounced daily rhythms of physical activity. Also, respiratory frequency and body weight showed and opposite correlation in slow- and fast-growing free-swimming fish as part of the complex trade-offs of growth, behavior and energy metabolism. Altogether, these results indicate that selective breeding for fast growth might limit the anaerobic fitness that would help to cope with limited oxygen availability in a scenario of climate change.
Descripción© 2021 The Author(s).
Versión del editorhttp://dx.doi.org/10.1016/j.aqrep.2021.100645
URIhttp://hdl.handle.net/10261/248449
DOI10.1016/j.aqrep.2021.100645
ISSN2352-5134
Aparece en las colecciones: (IATS) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Physiological_Perera_PV_Art2021.pdf2,29 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

10
checked on 21-abr-2024

WEB OF SCIENCETM
Citations

9
checked on 27-feb-2024

Page view(s)

55
checked on 27-abr-2024

Download(s)

91
checked on 27-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons