Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/240258
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGordon, Emily M.es_ES
dc.contributor.authorSeppälä, Annikaes_ES
dc.contributor.authorFunke, Berndes_ES
dc.contributor.authorTamminen, Johannaes_ES
dc.contributor.authorWalker, Kaley A.es_ES
dc.date.accessioned2021-05-10T08:19:09Z-
dc.date.available2021-05-10T08:19:09Z-
dc.date.issued2021-02-24-
dc.identifier.citationAtmospheric Chemistry and Physics 21(4): 2819-2836 (2021)es_ES
dc.identifier.issn1680-7316-
dc.identifier.otherSEV-2017-0709-
dc.identifier.urihttp://hdl.handle.net/10261/240258-
dc.descriptionThis work is distributed under the Creative Commons Attribution 4.0 License.es_ES
dc.description.abstractWe investigate the impact of the so-called energetic particle precipitation (EPP) indirect effect on lower stratospheric ozone, ClO, and ClONO2 in the Antarctic springtime. We use observations from the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) on Aura, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) on SCISAT, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat, covering the period from 2005 to 2017. Using the geomagnetic activity index Ap as a proxy for EPP, we find consistent ozone increases with elevated EPP during years with an easterly phase of the quasi-biennial oscillation (QBO) in both OMI and MLS observations. While these increases are the opposite of what has previously been reported at higher altitudes, the pattern in the MLS O3 follows the typical descent patterns of EPP-NOx . The ozone enhancements are also present in the OMI total O3 column observations. Analogous to the descent patterns found in O3, we also found consistent decreases in springtime MLS ClO following winters with elevated EPP. To verify if this is due to a previously proposed mechanism involving the conversion of ClO to the reservoir species ClONO2 in reaction with NO2, we used ClONO2 observations from ACE-FTS and MIPAS. As ClO and NO2 are both catalysts in ozone destruction, the conversion to ClONO2 would result in an ozone increase. We find a positive correlation between EPP and ClONO2 in the upper stratosphere in the early spring and in the lower stratosphere in late spring, providing the first observational evidence supporting the previously proposed mechanism relating to EPP-NOx modulating Clx-driven ozone loss. Our findings suggest that EPP has played an important role in modulating ozone depletion in the last 15 years. As chlorine loading in the polar stratosphere continues to decrease in the future, this buffering mechanism will become less effective, and catalytic ozone destruction by EPP-NOx will likely become a major contributor to Antarctic ozone loss. © Author(s) 2021es_ES
dc.description.sponsorshipEmily M. Gordon was supported by a University of Otago postgraduate publishing bursary. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, is a Canadian-led mission mainly supported by the Canadian Space Agency.es_ES
dc.description.sponsorshipWith funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709.es_ES
dc.language.isoenges_ES
dc.publisherCopernicus Publicationses_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SEV-2017-0709es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleObservational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone losses_ES
dc.typeartículoes_ES
dc.identifier.doi10.5194/acp-21-2819-2021-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.5194/acp-21-2819-2021es_ES
dc.identifier.e-issn1680-7324-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0es_ES
dc.contributor.funderUniversity of Otagoes_ES
dc.contributor.funderCanadian Space Agencyes_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000016es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100008247es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Aparece en las colecciones: (IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2021ACP....21.2819G.pdf10,06 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

6
checked on 12-may-2024

WEB OF SCIENCETM
Citations

6
checked on 28-feb-2024

Page view(s)

82
checked on 19-may-2024

Download(s)

25
checked on 19-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons