Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/229971
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

The inactivation of enzymes belonging to the central carbon metabolism is a novel mechanism of developing antibiotic resistance

AutorGil-Gil, Teresa; Corona, Fernando; Martínez, José Luis; Bernardini, Alejandra
Palabras claveFosfomycin
Antibiotic resistance
Central carbon metabolism
Embden-Meyerhof-Parnas pathway
Stenotrophomonas
Maltophilia
Fecha de publicación2020
EditorAmerican Society for Microbiology
CitaciónmSystems 5(3): e00282-20 (2020)
ResumenFosfomycin is a bactericidal antibiotic, analogous to phosphoenolpyruvate, that exerts its activity by inhibiting the activity of MurA. This enzyme catalyzes the first step of peptidoglycan biosynthesis, the transfer of enolpyruvate from phosphoenolpyruvate to uridine-diphosphate-N-acetylglucosamine. Fosfomycin is increasingly being used, mainly for treating infections caused by Gram-negative multidrug-resistant bacteria. The mechanisms of mutational resistance to fosfomycin in Stenotrophomonas maltophilia, an opportunistic pathogen characterized by its low susceptibility to commonly used antibiotics, were studied in the current work. None of the mechanisms reported so far for other organisms, which include the production of fosfomycin-inactivating enzymes, target modification, induction of an alternative peptidoglycan biosynthesis pathway, and the impaired entry of the antibiotic, are involved in the acquisition of such resistance by this bacterial species. Instead, the unique cause of resistance in the mutants studied is the mutational inactivation of different enzymes belonging to the Embden-Meyerhof-Parnas central metabolism pathway. The amount of intracellular fosfomycin accumulation did not change in any of these mutants, showing that neither inactivation nor transport of the antibiotic is involved. Transcriptomic analysis also showed that the mutants did not present changes in the expression level of putative alternative peptidoglycan biosynthesis pathway genes or any related enzyme. Finally, the mutants did not present an increased phosphoenolpyruvate concentration that might compete with fosfomycin for its binding to MurA. On the basis of these results, we describe a completely novel mechanism of antibiotic resistance based on mutations of genes encoding metabolic enzymes.
Descripción© 2020 Gil-Gil et al.
Versión del editorhttp://dx.doi.org/10.1128/mSystems.00282-20
URIhttp://hdl.handle.net/10261/229971
DOI10.1128/mSystems.00282-20
Identificadoresdoi: 10.1128/mSystems.00282-20
e-issn: 2379-5077
Aparece en las colecciones: (CNB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Inactivation_Gil_PV_Art2020.pdf1,71 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

111
checked on 01-may-2024

Download(s)

100
checked on 01-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons