Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/221814
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Modulation of cortical slow oscillatory rhythm by GABAB receptors: an in vitro experimental and computational study

AutorPérez-Zabalza, María; Reig, Ramón CSIC ORCID; Manrique, Jesus; Jercog, Daniel; Winograd, Milena CSIC ORCID; Parga, Néstor; Sánchez-Vives, María V. CSIC ORCID
Fecha de publicación2020
EditorWiley-VCH
CitaciónJournal of Physiology 598(16): 3439-3457 (2020)
ResumenSlow wave oscillations (SWOs) dominate cortical activity during deep sleep, anaesthesia and in some brain lesions. SWOs are composed of periods of activity (Up states) interspersed with periods of silence (Down states). The rhythmicity expressed during SWOs integrates neuronal and connectivity properties of the network and is often altered under pathological conditions. Adaptation mechanisms as well as synaptic inhibition mediated by GABAB receptors (GABAB‐Rs) have been proposed as mechanisms governing the termination of Up states. The interplay between these two mechanisms is not well understood, and the role of GABAB‐Rs controlling the whole cycle of the SWO has not been described. Here we contribute to its understanding by combining in vitro experiments on spontaneously active cortical slices and computational techniques. GABAB‐R blockade modified the whole SWO cycle, not only elongating Up states, but also affecting the subsequent Down state duration. Furthermore, while adaptation tends to yield a rather regular behaviour, we demonstrate that GABAB‐R activation desynchronizes the SWOs. Interestingly, variability changes could be accomplished in two different ways: by either shortening or lengthening the duration of Down states. Even when the most common observation following GABAB‐Rs blocking is the lengthening of Down states, both changes are expressed experimentally and also in numerical simulations. Our simulations suggest that the sluggishness of GABAB‐Rs to follow the excitatory fluctuations of the cortical network can explain these different network dynamics modulated by GABAB‐Rs.
Versión del editorhttps://doi.org/10.1113/JP279476
URIhttp://hdl.handle.net/10261/221814
DOI10.1113/JP279476
ISSN0022-3751
E-ISSN1469-7793
Aparece en las colecciones: (IN) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
11. JP279476.pdf5,6 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

9
checked on 21-abr-2024

SCOPUSTM   
Citations

15
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

15
checked on 29-feb-2024

Page view(s)

137
checked on 26-abr-2024

Download(s)

127
checked on 26-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons