Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/218538
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride

AutorErrea, Ion CSIC ORCID; Belli, Francesco CSIC ORCID; Monacelli, Lorenzo; Sanna, Antonio; Koretsune, Takashi; Tadano, Terumasa; Bianco, Raffaello CSIC ORCID; Calandra, Matteo; Arita, Ryotaro; Mauri, Francesco; Flores-Livas, José A.
Fecha de publicación2020
EditorSpringer Nature
CitaciónNature volume 578: 66–69 (2020)
ResumenThe discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at high pressures demonstrated the potential of hydrogen-rich materials as high-temperature superconductors. Recent theoretical predictions of rare-earth hydrides with hydrogen cages and the subsequent synthesis of LaH10 with a superconducting critical temperature (Tc) of 250 kelvin have placed these materials on the verge of achieving the long-standing goal of room-temperature superconductivity. Electrical and X-ray diffraction measurements have revealed a weakly pressure-dependent Tc for LaH10 between 137 and 218 gigapascals in a structure that has a face-centred cubic arrangement of lanthanum atoms. Here we show that quantum atomic fluctuations stabilize a highly symmetrical Fm3¯¯¯m crystal structure over this pressure range. The structure is consistent with experimental findings and has a very large electron–phonon coupling constant of 3.5. Although ab initio classical calculations predict that this Fm3¯¯¯m structure undergoes distortion at pressures below 230 gigapascals, yielding a complex energy landscape, the inclusion of quantum effects suggests that it is the true ground-state structure. The agreement between the calculated and experimental Tc values further indicates that this phase is responsible for the superconductivity observed at 250 kelvin. The relevance of quantum fluctuations calls into question many of the crystal structure predictions that have been made for hydrides within a classical approach and that currently guide the experimental quest for room-temperature superconductivity. Furthermore, we find that quantum effects are crucial for the stabilization of solids with high electron–phonon coupling constants that could otherwise be destabilized by the large electron–phonon interaction9, thus reducing the pressures required for their synthesis.
DescripciónarXiv:1907.11916v1
Versión del editorhttps://doi.org/10.1038/s41586-020-1955-z
URIhttp://hdl.handle.net/10261/218538
DOI10.1038/s41586-020-1955-z
ISSN0028-0836
E-ISSN1476-4687
Aparece en las colecciones: (CFM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
quantuhydri.pdf3,58 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

190
checked on 17-may-2024

WEB OF SCIENCETM
Citations

173
checked on 22-feb-2024

Page view(s)

108
checked on 16-may-2024

Download(s)

100
checked on 16-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.