Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/185681
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Ni/CeO2(111): a model catalyst for water-gas shift reaction

AutorLópez-Durán, David CSIC ORCID; Carrasco Rodríguez, Javier; Barrio Pliego, Laura CSIC ORCID; Liu, P.; Rodríguez, José A.; Ganduglia-Pirovano, M. V. CSIC ORCID
Fecha de publicación18-abr-2013
CitaciónChemistry and Molecular Sciences and Technologies COST Action CM1104 (2013)
ResumenCeria is an extensively used heterogeneous catalyst carrier due to its unique oxygen storage capabilities associated with the easy conversion between Ce3+ and Ce4+ ions. In addition, strong metal-ceria interactions result in an enhance performance by avoiding sintering of the active phase. One important example that boosted the use of ceria as a catalyst support is the water-gas shift (WGS) reaction for the production of syngas (H2 + CO2), where supported coinage metals (Au, Cu, or Pt) are typically employed as the active phase. Experimental insight revealed that nickel-based catalysts can also be stable, inexpensive and highly active, showing an excellent potential for the WGS reaction at small Ni coverages, whilst catalysing the production of methane from CO and H2 at medium and large coverages. Here we study the electronic structure, geometries, and adsorption of C, CO, and H2O on small Nin (n=1 and 4) particles supported on CeO2(111) using density-functional theory (DFT) with the DFT+U approach and compared to Ni(111) and CeO2(111). We show that the CO bond strength follows the trend: Ni(111) < Ni4/CeO2(111) < Ni1/CeO2(111) [4]. The stronger CO bond found for the smallest particles provides an explanation for the experimentally reported Ni coverage dependence of the CO methanation reaction on Ni/CeO2(111). Ni-ceria interactions are crucial for the interpretation of these results. In addition, we explore the adsorption and dissociation of water on these systems, since a good WGS catalyst should be able to oxidize and remove CO efficiently, but still be active enough to dissociate water. We observe that the molecular adsorption of water on the bare CeO2(111) surface (−0.55 eV) [5] is similar to the adsorption under the presence of supported single Ni atoms (−0.62 eV). Nevertheless, dissociative water adsorption is more favourable on the Ni1/CeO2(111) (−1.00 eV) than on the bare CeO2(111) surface (−0.60 eV) [5]. We have established computational models for Ni/ceria systems for the WGS reaction that are consistent with experimental knowledge for powder catalysts and experimental model catalysts and thus help to bridge the gap between them.
DescripciónTrabajo presentado en Chemistry and Molecular Sciences and Technologies COST Action CM1104, celebrado en Viena (Austria) del 18 al 19 de abril de 2013.
URIhttp://hdl.handle.net/10261/185681
Aparece en las colecciones: (ICP) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

171
checked on 26-abr-2024

Download(s)

38
checked on 26-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.