Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/159383
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

In situ gasification Chemical-Looping Combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent

AutorAbad Secades, Alberto CSIC ORCID ; Obras-Loscertales, Margarita de las CSIC ORCID; García Labiano, Francisco CSIC ORCID ; Diego Poza, Luis F. de CSIC ORCID ; Gayán Sanz, Pilar CSIC ORCID ; Adánez Elorza, Juan CSIC ORCID
Palabras claveCO2 capture
Chemical looping combustion
Coal
Desulphurization
Calcium-based sorbents
Oxygen carrier
Fecha de publicación15-feb-2017
EditorElsevier
CitaciónChemical Engineering Journal 310 (Part.1): 226-239 (2017)
ResumenIn-situ Gasification Chemical-Looping Combustion (iG-CLC) burning coal is achieving a great interest due to the possibility of using low cost oxygen carriers such as CaSO4. The Limestone Chemical Looping Combustion process (LCL-CTM) registered by Alstom Power Inc. proposes the use of a continuous CaCO3 feeding together with coal to produce CaSO4 as an oxygen carrier via sulphur retention. The operation is similar to what happens in a circulating fluidized bed boiler burning coal. In the present research work, the study of thermodynamic equilibrium limitations together with mass and enthalpy balances have been carried out for a CLC system in order to investigate whether the LCL-CTM process is a promising and energy efficient option to carry out the coal combustion with CO2 capture and in-situ desulphurisation. So, no limitations were found to transfer the required oxygen from air to fuel using sulphated limestone as oxygen carrier for whatever coal used. However, coals with sulphur content above 1 wt.% are advisable to perform this process. In addition, no drawback referred to thermal integration in the system has been detected. Thus, operation at 950 ºC in the fuel reactor to avoid SO2 release via side reactions, and 1000 ºC in the air reactor is feasible. Likewise, experimental tests have been performed in a thermogravimetric analyser to analyse the capability of a limestone to be sulphated and to transfer oxygen. A value of the oxygen transport capacity of about 16.7 wt.% was obtained. This value is four times higher than that of others typical inexpensive oxygen carriers published in literature.
Descripción© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Versión del editorhttp://dx.doi.org/10.1016/j.cej.2016.10.113
URIhttp://hdl.handle.net/10261/159383
DOI10.1016/j.cej.2016.10.113
E-ISSN1385-8947
Aparece en las colecciones: (ICB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2_postprint CEJ 310 (2017) 226_239.pdf1,34 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

47
checked on 11-may-2024

WEB OF SCIENCETM
Citations

42
checked on 23-feb-2024

Page view(s)

345
checked on 13-may-2024

Download(s)

289
checked on 13-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons