Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/117601
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorTymchenko, Mykhailo-
dc.contributor.authorNikitin, Alexey Y.-
dc.contributor.authorMartín-Moreno, Luis-
dc.date.accessioned2015-07-06T10:24:55Z-
dc.date.available2015-07-06T10:24:55Z-
dc.date.issued2013-
dc.identifierdoi: 10.1021/nn403282x-
dc.identifierissn: 1936-0851-
dc.identifiere-issn: 1936-086X-
dc.identifier.citationACS Nano 7(11): 9780-9787 (2013)-
dc.identifier.urihttp://hdl.handle.net/10261/117601-
dc.description.abstractA single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene. © 2013 American Chemical Society.-
dc.description.sponsorshipThis work has been partially funded by the Spanish Ministry of Science and Innovation under Contract MAT2011-28581-C02.-
dc.publisherAmerican Chemical Society-
dc.relation.isversionofPostprint-
dc.rightsopenAccess-
dc.subjectMagnetic field-
dc.subjectFaraday rotation-
dc.subjectGraphene magnetoplasmons (GMP)-
dc.subjectGraphene ribbons-
dc.titleFaraday rotation due to excitation of magnetoplasmons in graphene microribbons-
dc.typeartículo-
dc.identifier.doi10.1021/nn403282x-
dc.relation.publisherversionhttp://dx.doi.org/10.1021/nn403282x-
dc.date.updated2015-07-06T10:24:56Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypeartículo-
item.fulltextWith Fulltext-
Aparece en las colecciones: (ICMA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Faraday Rotation.pdf952,07 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

108
checked on 30-abr-2024

WEB OF SCIENCETM
Citations

103
checked on 29-feb-2024

Page view(s)

259
checked on 06-may-2024

Download(s)

554
checked on 06-may-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.