Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/109203
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorPagala, Prithvi Sekhar-
dc.contributor.authorSuárez Ruiz, Francisco A.-
dc.contributor.authorFerre, Manuel-
dc.date.issued2013-
dc.identifier.citation2013 IEEE EUROCON: 1462-1467 (2013)-
dc.identifier.isbn978-1-4673-2232-4-
dc.identifier.isbn978-1-4673-2230-0-
dc.identifier.urihttp://hdl.handle.net/10261/109203-
dc.description.abstractRecent advancements in different fields such as computing technologies and fast communication channels has lead to increased interest in master-slave systems and their various applications for teleoperation field. When investigating master-slave systems, the general approach points towards better performance, where major concerns are stability and transparency of the system. This has lead to a large amount of different control schemes that intend to optimise only these aspects. This paper presents a different strategy that focus on the energy consumption perspective across some of the most common bilateral architectures proposed in the literature. In particular, special attention to the slave subsystem is paid since new applications are emerging for mobile platforms but are restricted in autonomy, due to the limited battery power of the system. In this paper a halt and switch process between the bilateral control architectures has been implemented where the goal is to increase the system performance while intending to minimise power consumption. This work can be extended for fault detection and failure prediction during preventive maintenance. The results presented can also be extended to fixed slave arms to reduce their energy demand footprint. The study is done using a 1 degree of freedom (DOF) Master-Slave test bed but the results and conclusions herein presented are applicable to more complex robot systems with multiple DOF.eng
dc.language.isoengen
dc.relation.isversionofPublisher's versionen
dc.rightsclosedAccesses_ES
dc.subjectEnergy optimisationen
dc.subjectPower managementen
dc.subjectFault detectionen
dc.subjectBilateral controlen
dc.subjectTeleoperationeng
dc.titleEnergy Consumption Perspective of Bilateral Control Architectureseng
dc.typecomunicación de congresoes_ES
dc.description.peerreviewedPeer revieweden
dc.relation.publisherversionhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;UT=WOS:000343135600212es_ES
dc.relation.csices_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.openairetypecomunicación de congreso-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Aparece en las colecciones: (CAR) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

285
checked on 28-may-2024

Download(s)

89
checked on 28-may-2024

Google ScholarTM

Check

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.