Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/103152
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Viscoelastic displacement and gravity changes due to point magmatic intrusions in a gravitational layered solid earth

AutorFernández Torres, José CSIC ORCID ; Tiampo, Kristy F.; Rundle, J. B.
Fecha de publicaciónjul-2001
EditorOxford University Press
CitaciónGeophysical Journal International 146(1): 155- 170 (2001)
ResumenWe present a method for the computation of time-dependent geodetic and geophysical signatures (deformation, potential and gravity changes) due to magmatic intrusions in a layered viscoelastic-gravitational medium. This work is an extension of a deformation model previously developed to compute effects due to volcanic loading in an elastic gravitational layered media. The model assumes a planar earth geometry, useful for near field problems, and consists of welded elastic and viscoelastic layers overlying a viscoelastic half-space. Every layer can either be considered elastic or viscoelastic. The intrusion (treated as a point source) can be located at any depth, in any of the layers or in the half-space. Several examples of theoretical computations for different media are also presented. We have found that, in line with previous results obtained by other authors, introducing viscoelastic properties in all or part of the medium can extend the effects (displacements, gravity changes, etc.) considerably and therefore lower pressure increases are required to model given observed effects. The viscoelastic effects seem to depend mainly on the rheological properties of the layer (zone) where the intrusion is located, rather than on the rheology of the whole medium. We apply our model to the 1982-1984 uplift episode at Campi Flegrei, modelling simultaneously the observed vertical displacement and gravity changes. The results clearly show that for a correct interpretation of observed effects it is necessary to include the gravitational field in the anelastic theoretical models. This factor can change the value and pattern of time- dependent deformation as well as the gravity changes, explaining cases of displacement without noticeable gravity changes or vice versa, cases with uplift and incremental gravity values, and other cases. The combination of displacement and gravity changes is found to be especially effective in constraining the possible characteristics of the magmatic intrusion as well as the rheology of the medium surrounding it.
URIhttp://hdl.handle.net/10261/103152
DOI10.1046/j.0956-540X.2001.01450.x
Identificadoresdoi: 10.1046/j.0956-540X.2001.01450.x
issn: 0956-540X
Aparece en las colecciones: (IAG) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
GJI_2001_164_1_155.pdf1,09 MBUnknownVisualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

28
checked on 12-abr-2024

WEB OF SCIENCETM
Citations

28
checked on 21-feb-2024

Page view(s)

428
checked on 23-abr-2024

Download(s)

333
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.