Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/99662
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorArmentano, Ilaria-
dc.contributor.authorFortunati, Elena-
dc.contributor.authorMattioli, Samantha-
dc.contributor.authorRescignano, Nicoletta-
dc.contributor.authorKenny, José María-
dc.date.accessioned2014-07-10T08:15:51Z-
dc.date.available2014-07-10T08:15:51Z-
dc.date.issued2013-
dc.identifierdoi: 10.2174/187221113804805874-
dc.identifierissn: 1872-2113-
dc.identifiere-issn: 2212-4039-
dc.identifier.citationRecent Patents on Drug Delivery and Formulation 7: 9- 17 (2013)-
dc.identifier.urihttp://hdl.handle.net/10261/99662-
dc.description.abstractThe application of new biomaterial technologies offers the potential to direct the stem cell fate, targeting the delivery of cells and reducing immune rejection, thereby supporting the development of regenerative medicine. Cells respond to their surrounding structure and with nanostructures exhibit unique proliferative and differentiation properties. This review presents the relevance, the promising perspectives and challenges of current biodegradable composite scaffolds in terms of material properties, processing technology and surface modification, focusing on significant recent patents in these fields. It has been reported how biodegradable porous composite scaffolds can be engineered with initial properties that reproduce the anisotropy, viscoelasticity, tension-compression non-linearity of different tissues by introducing specific nanos-tructures. Moreover the modulation of electrical, morphological, surface and topographic scaffold properties enables specific stem cell response. Recent advances in nanotechnology have allowed to engineer novel biomaterials with these complexity levels. Understanding the specific biological response triggered by various aspects of the fibrous environment is important in guiding the design and engineering of novel substrates that mimic the native cell matrix interactions in vivo. © 2013 Bentham Science Publishers.-
dc.publisherBentham Science Publishers-
dc.rightsclosedAccess-
dc.subjectBiodegradable polymers-
dc.subjectComposites-
dc.subjectScaffolds-
dc.subjectStem cells-
dc.subjectSurface modifications-
dc.titleBiodegradable composite scaffolds: A strategy to modulate stem cell behaviour-
dc.typeartículo-
dc.identifier.doi10.2174/187221113804805874-
dc.date.updated2014-07-10T08:15:51Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeartículo-
item.cerifentitytypePublications-
item.grantfulltextnone-
Aparece en las colecciones: (ICTP) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

12
checked on 22-abr-2024

Page view(s)

245
checked on 24-abr-2024

Download(s)

100
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.