English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/99542
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles

AuthorsEstrader, Marta ; López-Ortega, Alberto; Estradé, S.; Golosovsky, I. V.; Salazar-Álvarez, G.; Peiró, F.; Suriñach, S.; Baró, M. D.; Nogués, Josep
KeywordsCondensed matter
Physical sciences
Issue Date2013
PublisherNature Publishing Group
CitationNature Communications 4: 2960 (2013)
AbstractThe growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles. © 2013 Macmillan Publishers Limited.
Identifiersdoi: 10.1038/ncomms3960
e-issn: 2041-1723
Appears in Collections:(CIN2) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.