English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/99232
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: Electrochemical and structural characteristics as a hybrid Li-ion battery anode

AutorSotomayor Torres, C. M. ; O'Dwyer, Colm
Palabras claveIndium tin oxide
Electrochemistry
Anode
Nanoparticles
Tin oxide
Lithium-ion batteries
Fecha de publicación2013
EditorAmerican Chemical Society
CitaciónACS Applied Materials and Interfaces 5(16): 8195-8202 (2013)
ResumenTin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials. © 2013 American Chemical Society.
URIhttp://hdl.handle.net/10261/99232
DOI10.1021/am4023169
Identificadoresdoi: 10.1021/am4023169
issn: 1944-8244
e-issn: 1944-8252
Aparece en las colecciones: (CIN2) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.