English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/98003
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments

AuthorsMenéndez-Arias, Luis
KeywordsEntry inhibitors
Protease
Drug resistance
Reverse transcriptase
Integrase
HIV
Issue Date2013
PublisherElsevier
CitationAntiviral Research 98: 93- 120 (2013)
AbstractThe introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments. © 2013 Elsevier B.V.
URIhttp://hdl.handle.net/10261/98003
DOI10.1016/j.antiviral.2013.01.007
Identifiersdoi: 10.1016/j.antiviral.2013.01.007
issn: 0166-3542
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.