English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/97632
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms

Autor Vaca, Rubén; Aranda López, Juan; Thomas, Federico
Palabras clave Path planning
Pure condition
Voronoi diagrams
Gough-Stewart platform
Fecha de publicación 2012
EditorSpringer
Citación Latest Advances in Robot Kinematics: 157-164 (2012)
ResumenThe obstacles in Configuration Space of quadratically-solvable Gough-Stewart platforms, due to both kinematic singularities and collisions, can be uniformly represented by a Boolean combination of signs of 4×4 determinants involving the homogeneous coordinates of sets of four points. This Boolean combination induces a measure of distance to obstacles in Configuration Space from which a simplified Voronoi diagram can be derived. Contrary to what happens with standard Voronoi diagrams, this diagram is no longer a strong deformation retract of free space but, as Canny proved in 1987, it is still complete for motion planning. Its main advantage is that it has lower algebraic complexity than standard Voronoi diagrams based on the Euclidean metric.
Descripción Presentado al 13th International Symposium on Advances in Robot Kinematics (ARK) celebrado en Austria del 24 al 28 de junio de 2012.
Versión del editorhttp://dx.doi.org/10.1007/978-94-007-4620-6_20
URI http://hdl.handle.net/10261/97632
DOI10.1007/978-94-007-4620-6_20
Identificadoresdoi: 10.1007/978-94-007-4620-6_20
isbn: 978-94-007-4619-0
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Simplified Voronoi.pdf940,93 kBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.