English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/97609
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Modeling Klebsiella pneumoniae Pathogenesis by Infection of the Wax Moth Galleria mellonella

AuthorsInsua, José Luis; Llobet Brossa, Enrique; Moranta, David; Pérez-Gutiérrez, Camino; Tomás, Anna; Garmendia, Juncal ; Bengoechea, José Antonio
Issue Date2-Jul-2013
PublisherAmerican Society for Microbiology
CitationInfection and Immunity 81(10): 3552-3565 (2013)
AbstractThe implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae. ©2013, American Society for Microbiology.
URIhttp://hdl.handle.net/10261/97609
DOI10.1128/IAI.00391-13
Identifiersdoi: 10.1128/IAI.00391-13
issn: 0019-9567
Appears in Collections:(IDAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.