English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/97273
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Effect of macromolecular crowding agents on human immunodeficiency virus type 1 capsid protein assembly in vitro

Autordel Álamo, Marta; Rivas, Germán ; Mateu, Mauricio G.
Fecha de publicaciónnov-2005
EditorAmerican Society for Microbiology
CitaciónJournal of Virology 79 (22) 14271- 14281 (2005)
ResumenPrevious studies on the self-assembly of capsid protein CA of human immunodeficiency virus type 1 (HIV-1) in vitro have provided important insights on the structure and assembly of the mature HIV-1 capsid. However, CA polymerization in vitro was previously observed to occur only at very high ionic strength. Here, we have analyzed the elects on CA assembly in vitro of adding unrelated, inert macromolecules (crowding agents), aimed at mimicking the crowded (very high macromolecular effective concentration) environment within the HIV-1 virion. Crowding agents induced fast and efficient polymerization of CA even at low (close to physiological) ionic strength. The hollow cylinders thus assembled were indistinguishable in shape and dimensions from those formed in dilute protein solutions at high ionic strength. However, two important differences were noted: (i) disassembly by dilution of the capsid-like particles was undetectable at very high ionic strength, but occurred rapidly at low ionic strength in the presence of a crowding agent, and (ii) a variant CA from a presumed infectious HIV-1 with mutations at the CA dimerization interface was unable to assemble at any ionic strength in the absence of a crowding agent; in contrast, this mutation allowed efficient assembly, even at low ionic strength, when a crowding agent was used. The use of a low ionic strength and inert macromolecules to mimic the crowded environment inside the HIV-1 virion may lead to a better in vitro evaluation of the effects of conditions, mutations or/and other molecules, including potential antiviral compounds, on HIV-1 capsid assembly, stability and disassembly. Copyright © 2005, American Society for Microbiology. All Rights Reserved.
Descripción11 p.-9 fig.-2 tab.
Versión del editorhttp://dx.doi.org/ 10.1128/JVI.79.22.14271-14281.2005
Aparece en las colecciones: (CIB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.