English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96997
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 5 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Minimization of sewage network overflow

Autor Joseph-Duran, Bernat ; Jung, Michael N.; Ocampo-Martinez, Carlos; Sager, Sebastian; Cembrano, Gabriela
Palabras clave CSO
Optimization
Optimal control
Sewer networks
Fecha de publicación 2014
EditorSpringer
Citación Water Resources Management 28(1): 41-63 (2014)
ResumenWe are interested in the optimal control of sewage networks. It is of high public interest to minimize the overflow of sewage onto the streets and to the natural environment that may occur during periods of heavy rain. The assumption of linear flow in a discrete time setting has proven to be adequate for the practical control of larger systems. However, the possibility of overflow introduces a nonlinear and nondifferentiable element to the formulation, by means of a maximum of linear terms. This particular challenge can be addressed by smoothing methods that result in a nonlinear program (NLP) or by logical constraints that result in a mixed integer linear program (MILP). We discuss both approaches and present a novel tailored branch-and-bound algorithm that outperforms competing methods from the literature for a set of realistic rain scenarios. © 2013 Springer Science+Business Media Dordrecht.
Versión del editorhttp://dx.doi.org/10.1007/s11269-013-0468-z
URI http://hdl.handle.net/10261/96997
DOI10.1007/s11269-013-0468-z
Identificadoresissn: 0920-4741
e-issn: 1573-1650
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Minimization of Sewage.pdf678,61 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.