English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/9694
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 48 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Topography studies on the membrane interaction mechanism of the eosinophil cationic protein

AutorTorrent-Sucarrat, M.; Cuyás, Elisabet; Carreras, Esther; Navarro, Susanna; López Serrano, Olga; Maza, Alfons de la; Nogués, M. Victòria; Reshetnyak, Yana K.; Boix, Ester
Palabras claveMembrane
Interaction mechanism
Eosinophil Cationic Protein (ECP)
Membrane destabilization
Fecha de publicación23-ene-2007
EditorAmerican Chemical Society
CitaciónBiochemistry 46(3): 720-733 (2007)
ResumenThe eosinophil cationic protein (ECP) is an antipathogen protein involved in the host defense system. ECP displays bactericidal and membrane lytic capacities [Carreras et al. (2003) Biochemistry 42, 6636-6644]. We have now characterized in detail the protein-membrane interaction process. All observed fluorescent parameters of the wild type and single-tryptophan-containing mutants, as well as the results of decomposition analysis of protein fluorescence, suggest that W10 and W35 belong to two distinct spectral classes I and III, respectively. Tryptophan residues were classified and assigned to distinct structural classes using statistical approaches based on the analysis of tryptophan microenvironment structural properties. W10 belongs to class I and is buried in a relative nonpolar, nonflexible protein environment, while W35 (class III) is fully exposed to free water molecules. Tryptophan solvent exposure and the depth of the protein insertion in the lipid bilayer were monitored by the degree of protein fluorescence quenching by KI and brominated phospholipids, respectively. Results indicate that W35 partially inserts into the lipid bilayer, whereas W10 does not. Further analysis by electron microscopy and dynamic light scattering indicates that ECP can destabilize and trigger lipid vesicle aggregation at a nanomolar concentration range, corresponding to about 1:1000 protein/lipid ratio. No significant leakage of the vesicle aqueous content takes place below that protein concentration threshold. The data are consistent with a membrane destabilization “carpet-like” mechanism.
Descripción14 pages, 6 figures.-- PMID: 17223693 [PubMed].-- Available online on Dec 29, 2006.
Versión del editorhttp://dx.doi.org/10.1021/bi061190e
URIhttp://hdl.handle.net/10261/9694
DOI10.1021/bi061190e
ISSN1520-4995
Aparece en las colecciones: (IQAC) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.