English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96866
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Segmenting color images into surface patches by exploiting sparse depth data

AutorDellen, Babette ; Alenyà, Guillem ; Foix, Sergi ; Torras, Carme
Fecha de publicación2011
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Workshop on the Applications of Computer Vision: 591-598 (2011)
ResumenWe present a new method for segmenting color images into their composite surfaces by combining color segmentation with model-based fitting utilizing sparse depth data, acquired using time-of-flight (Swissranger, PMD CamCube) and stereo techniques. The main target of our work is the segmentation of plant structures, i.e., leaves, from color-depth images, and the extraction of color and 3D shape information for automating manipulation tasks. Since segmentation is performed in the dense color space, even sparse, incomplete, or noisy depth information can be used. This kind of data often represents a major challenge for methods operating in the 3D data space directly. To achieve our goal, we construct a three-stage segmentation hierarchy by segmenting the color image with different resolutions - assuming that ``true'' surface boundaries must appear at some point along the segmentation hierarchy. 3D surfaces are then fitted to the color-segment areas using depth data. Those segments which minimize the fitting error are selected and used to construct a new segmentation. Then, an additional region merging and a growing stage are applied to avoid over-segmentation and label previously unclustered points. Experimental results demonstrate that the method is successful in segmenting a variety of domestic objects and plants into quadratic surfaces. At the end of the procedure, the sparse depth data is completed using the extracted surface models, resulting in dense depth maps. For stereo, the resulting disparity maps are compared with ground truth and the average error is computed.
DescripciónTrabajo presentado al WACV 2011 celebrado en Kona (USA) del 5 al 7 de enero.
Versión del editorhttp://dx.doi.org/10.1109/WACV.2011.5711558
URIhttp://hdl.handle.net/10261/96866
DOI10.1109/WACV.2011.5711558
Identificadoresdoi: 10.1109/WACV.2011.5711558
isbn: 978-1-4244-9496-5
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Segmenting color images.pdf4,03 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.