English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96773
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Amortized constant time state estimation in Pose SLAM and hierarchical SLAM using a mixed Kalman-information filter

AutorIla, Viorela ; Porta, Josep M.; Andrade-Cetto, Juan
Fecha de publicación2011
CitaciónRobotics and Autonomous Systems 59(5): 310-318 (2011)
ResumenThe computational bottleneck in all information-based algorithms for simultaneous localization and mapping (SLAM) is the recovery of the state mean and covariance. The mean is needed to evaluate model Jacobians and the covariance is needed to generate data association hypotheses. In general, recovering the state mean and covariance requires the inversion of a matrix with the size of the state, which is computationally too expensive in time and memory for large problems. Exactly sparse state representations, such as that of Pose SLAM, alleviate the cost of state recovery either in time or in memory, but not in both. In this paper, we present an approach to state estimation that is linear both in execution time and in memory footprint at loop closure, and constant otherwise. The method relies on a state representation that combines the Kalman and the information-based approaches. The strategy is valid for any SLAM system that maintains constraints between marginal states at different time slices. This includes both Pose SLAM, the variant of SLAM where only the robot trajectory is estimated, and hierarchical techniques in which submaps are registered with a network of relative geometric constraints. © 2011 Elsevier B.V. All rights reserved.
Versión del editorhttp://dx.doi.org/10.1016/j.robot.2011.02.010
Identificadoresdoi: 10.1016/j.robot.2011.02.010
issn: 0921-8890
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Kalman-information filter.pdf1,09 MBUnknownVisualizar/Abrir
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.