English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96526
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 7 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

General robot kinematics decomposition without intermediate markers

Autor Ulbrich, Stefan; Ruiz de Angulo, Vicente; Asfour, Tamim; Torras, Carme; Dillman, Rudiger
Fecha de publicación 2012
EditorInstitute of Electrical and Electronics Engineers
Citación IEEE Transactions on Neural Networks and Learning Systems 23(4): 620-630 (2012)
ResumenThe calibration of serial manipulators with high numbers of degrees of freedom by means of machine learning is a complex and time-consuming task. With the help of a simple strategy, this complexity can be drastically reduced and the speed of the learning procedure can be increased: When the robot is virtually divided into shorter kinematic chains, these subchains can be learned separately and, hence, much more efficiently than the complete kinematics. Such decompositions, however, require either the possibility to capture the poses of all end- effectors of all subchains at the same time, or they are limited to robots that fulfill special constraints. In this work, an alternative decomposition is presented that does not suffer from these limitations. An offline training algorithm is provided in which the composite subchains are learned sequentially with dedicated movements. A second training scheme is provided to train composite chains simultaneously and online. Both schemes can be used together with many machine learning algorithms. In the simulations, an algorithm using Parameterized Self-Organizing Maps (PSOM) modified for online learning and Gaussian Mixture Models (GMM) were chosen to show the correctness of the approach. The experimental results show that, using a two-fold decomposition, the number of samples required to reach a given precision is reduced to twice the square root of the original number.
Versión del editorhttp://dx.doi.org/10.1109/TNNLS.2012.2183886
URI http://hdl.handle.net/10261/96526
DOI10.1109/TNNLS.2012.2183886
Identificadoresdoi: 10.1109/TNNLS.2012.2183886
issn: 2162-237X
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
General Robot Kinematics.pdf3,82 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.