English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96419
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Learning collaborative impedance-based robot behaviors

AutorRozo, Leonel; Calinon, Sylvain; Caldwell, Darwin; Jiménez Schlegl, Pablo; Torras, Carme
Fecha de publicación2013
EditorAssociation for the Advancement of Artificial Intelligence
CitaciónProceedings of the twenty-seventh AAAI Conference on Artificial Intelligence: 1422-1428 (2013)
ResumenResearch in learning from demonstration has focused on transferring movements from humans to robots. However, a need is arising for robots that do not just replicate the task on their own, but that also interact with humans in a safe and natural way to accomplish tasks cooperatively. Robots with variable impedance capabilities opens the door to new challenging applications, where the learning algorithms must be extended by encapsulating force and vision information. In this paper we propose a framework to transfer impedance-based behaviors to a torque-controlled robot by kinesthetic teaching. The proposed model encodes the exam- ples as a task-parameterized statistical dynamical system, where the robot impedance is shaped by estimating virtual stiffness matrices from the set of demonstrations. A collaborative assembly task is used as testbed. The results show that the model can be used to modify the robot impedance along task execution to facilitate the collaboration, by triggering stiff and compliant behaviors in an on-line manner to adapt to the user's actions.
DescripciónTrabajo presentado a la 27th AAAI Conference celebrada del 14 al 18 de julio de 2013 en Washington (USA).
Versión del editorhttp://www.aaai.org/Press/Proceedings/aaai13.php
Identificadoresisbn: 978-1-57735-615-8
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Learning collaborative.pdf1,27 MBUnknownVisualizar/Abrir
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.