English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96315
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Bootstrapping boosted random Ferns for discriminative and efficient object classification

AutorVillamizar, Michael; Andrade-Cetto, Juan ; Sanfeliu, Alberto; Moreno-Noguer, Francesc
Palabras claveRandom ferns
Object detection
Fecha de publicación2012
CitaciónPattern Recognition 45(9): 3141-3153 (2012)
ResumenIn this paper we show that the performance of binary classifiers based on Boosted Random Ferns can be significantly improved by appropriately bootstrapping the training step. This results in a classifier which is both highly discriminant and computationally efficient and is particularly suitable when only small sets of training images are available. During the learning process, a small set of labeled images is used to train the boosting binary classifier. The classifier is then evaluated over the training set and warped versions of the classified and misclassified patches are progressively added into the positive and negative sample sets for a new retraining step. In this paper we thoroughly study the conditions under which this bootstrapping scheme improves the detection rates. In particular we assess the quality of detection both as a function of the number of bootstrapping iterations and the size of the training set. We compare our algorithm against state-of-the-art approaches for several databases including faces, cars, motorbikes and horses, and show remarkable improvements in detection rates with just a few bootstrapping steps.
DescripciónBest Papers of Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA'2011).
Versión del editorhttp://dx.doi.org/10.1016/j.patcog.2012.03.025
Identificadoresdoi: 10.1016/j.patcog.2012.03.025
issn: 0031-3203
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Bootstrapping.pdf7,88 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.