English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/96301
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

A probabilistic integrated object recognition and tracking framework

AutorSerratosa, Francesc; Alquézar Mancho, Renato ; Amézquita, Nicolás
Palabras claveObject tracking
Dynamic environments
Video sequences
Probabilistic methods
Performance evaluation
Object recognition
Fecha de publicación2012
CitaciónExpert Systems with Applications 39(8): 7302-7318 (2012)
ResumenThis paper describes a probabilistic integrated object recognition and tracking framework called PIORT, together with two specific methods derived from it, which are evaluated experimentally in several test video sequences. The first step in the proposed framework is a static recognition module that provides class probabilities for each pixel of the image from a set of local features. These probabilities are updated dynamically and supplied to a tracking decision module capable of handling full and partial occlusions. The two specific methods presented use RGB color features and differ in the classifier implemented: one is a Bayesian method based on maximum likelihood and the other one is based on a neural network. The experimental results obtained have shown that, on one hand, the neural net based approach performs similarly and sometimes better than the Bayesian approach when they are integrated within the tracking framework. And on the other hand, our PIORT methods have achieved better results when compared to other published tracking methods in video sequences taken with a moving camera and including full and partial occlusions of the tracked object. © 2011 Elsevier Ltd. All rights reserved.
Versión del editorhttp://dx.doi.org/10.1016/j.eswa.2012.01.088
Identificadoresdoi: 10.1016/j.eswa.2012.01.088
issn: 0957-4174
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
probabilistic integrated.pdf2,24 MBUnknownVisualizar/Abrir
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.