English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/95858
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Contrasting evolutionary demography induced by fishing: the role of adaptive phenotypic plasticity

AuthorsHidalgo, Manuel ; Olsen, Esben Moland; Ohlberger, Jan; Saborido-Rey, Fran ; Murua, Hilario; Piñeiro, Carmen G.; Stenseth, Nils Christian
KeywordsContemporary evolution
Demographic erosion
European hake
Evolutionary demography
Fishing induced effects
Merluccius meruluccius
Phenotypic plasticity
Fisheries conservation
Issue Date2014
PublisherEcological Society of America
CitationEcological Applications 24(5): 1101-1114 (2014)
AbstractMounting evidence now shows that fishing activity modifies both heritable life-history traits and ecological processes in harvested populations. However, ecological and evolutionary changes are intimately linked and can occur on the same time-scale, and few studies have investigated their combined effect on fish population dynamics. Here, we contrast two population subunits of a harvested fish species in the Northeast Atlantic, the European hake (Merluccius merluccius), in the light of the emerging field of evolutionary demography, which considers the interacting processes between ecology and evolution. The two subunits experienced similar age/size truncation due to size-selective fishing, but displayed differences in key ecological processes (recruitment success) and phenotypic characteristics (maturation schedule). We investigate how temporal variation in maturation and recruitment success interactively shape the population dynamics of the two subunits. We document that the two subunits of European hake displayed different responses to fishing in maturation schedules, possibly because of the different level of adaptive phenotypic plasticity. Our results also suggest that high phenotypic plasticity can dampen the effects of fisheries-induced demographic truncation on population dynamics, whereas a population subunit characterized by low phenotypic plasticity may suffer from additive effects of ecological and life-history responses. Similar fishing pressure may thus trigger contrasting interactions between life history variation and ecological processes within the same population. The presented findings improve our understanding of how fishing impacts eco-evolutionary dynamics, which is a keystone for a more comprehensive management of harvested species.
Description41 páginas, 4 apéndices
Publisher version (URL)http://dx.doi.org/10.1890/12-1777.1
Appears in Collections:(IIM) Artículos
Files in This Item:
File Description SizeFormat 
2014_Contrasting_evolutionary _preprint.pdf2,69 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.