English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/95486
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMartín-Acebes, Miguel Ángel-
dc.contributor.authorBlázquez, Ana Belén-
dc.contributor.authorJiménez de Oya, Nereida-
dc.contributor.authorEscribano-Romero, Estela-
dc.contributor.authorShi, Pei-Yong-
dc.contributor.authorSaiz, Juan Carlos-
dc.date.accessioned2014-04-14T11:38:45Z-
dc.date.available2014-04-14T11:38:45Z-
dc.date.issued2013-
dc.identifierdoi: 10.1371/journal.pone.0069479-
dc.identifierissn: 1932-6203-
dc.identifier.citationPLoS ONE 8 (2013)-
dc.identifier.urihttp://hdl.handle.net/10261/95486-
dc.description.abstractWest Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses. © 2013 Martín-Acebes et al.-
dc.description.sponsorshipRecursos y Tecnologıas Agrarias (RTA2011-00036) from Instituto Nacional de Investigacion Agraria y Alimentaria; Network of Animal Disease Infectiology and Research-European Union (NADIR-EU-228394); MAMA is the recipient of a Junta de Ampliacion de Estudios (JAE)-Doctoral fellowship from Spanish Research Council (CSIC)-
dc.publisherPublic Library of Science-
dc.relation.isversionofPublisher’s version-
dc.rightsopenAccess-
dc.titleA Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds-
dc.typeartículo-
dc.identifier.doi10.1371/journal.pone.0069479-
dc.date.updated2014-04-14T11:38:45Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
MA_Martin_Acebes_Plos_One.pdf2,74 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.