English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/95347
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Artificial neural networks based on CODES descriptors in pharmacology: Identification of novel trypanocidal drugs against chagas disease

AutorGuerra, Ángela ; González-Naranjo, Pedro ; Campillo, Nuria E. ; Cerecetto, Hugo; González, Mercedes; Páez, Juan A.
Palabras clavetrypanocidal
CODES
Chagas disease
QSAR
Trypanosoma cruzi
compounds
in silico
molecules
neural network
Pharmacology
Fecha de publicación2013
EditorBentham Science Publishers
CitaciónCurrent Computer-Aided Drug Design 9: 130- 140 (2013)
ResumenA supervised artificial neural network model has been developed for the accurate prediction of the anti-T. cruzi activity of heterogeneous series of compounds. A representative set of 72 compounds of wide structural diversity was chosen in this study. The definition of the molecules was achieved from an unsupervised neural network using a new methodology, CODES program. This program codifies each molecule into a set of numerical parameters taking into account exclusively its chemical structure. The final model shows high average accuracy of 84% (training performance) and predictability of 77% (external validation performance) for the 4:4:1 architecture net with different training set and external prediction test. This approach using CODES methodology represents a useful tool for the prediction of pharmacological properties. CODES© is available free of charge for academic institutions. © 2013 Bentham Science Publishers.
URIhttp://hdl.handle.net/10261/95347
DOInull
Identificadoresdoi: null
issn: 1573-4099
e-issn: 1875-6697
Aparece en las colecciones: (IQM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.