English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94921
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 57 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aeria Vehicle (UAV) Images

Autor Peña Barragán, José Manuel ; Torres-Sánchez, Jorge ; Castro, Ana Isabel de ; Kelly, Maggi; López Granados, Francisca
Fecha de publicación 11-oct-2013
EditorPublic Library of Science
Citación PLoS ONE 8(10): e77151 (2013)
ResumenThe use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure. The estimation of weed coverage from the image analysis yielded satisfactory results. The relationship of estimated versus observed weed densities had a coefficient of determination of r2=0.89 and a root mean square error of 0.02. A map of three categories of weed coverage was produced with 86% of overall accuracy. In the experimental field, the area free of weeds was 23%, and the area with low weed coverage (<5% weeds) was 47%, which indicated a high potential for reducing herbicide application or other weed operations. The OBIA procedure computes multiple data and statistics derived from the classification outputs, which permits calculation of herbicide requirements and estimation of the overall cost of weed management operations in advance.
URI http://hdl.handle.net/10261/94921
DOI10.1371/journal.pone.0077151
Identificadoresdoi: 10.1371/journal.pone.0077151
issn: 1932-6203
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
weed_mapping_Barragan.pdf4,12 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.