English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/9479
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


A systematic approach to plant-wide control based on thermodynamics

AuthorsAntelo, L. T. ; Otero-Muras, Irene ; Banga, Julio R. ; Alonso, Antonio A.
KeywordsPlant-wide control
Process networks
Irreversible thermodynamics
Inventory control
Issue DateMay-2007
CitationComputers & Chemical Engineering 31(5-6): 677-691 (2007)
AbstractIn this work, a systematic approach to plant-wide control design is proposed. The method combines ingredients from process networks, thermodynamics and systems theory to derive robust decentralized controllers that will ensure complete plant stability. As a first step, the considered process system is decomposed into abstract mass and energy inventory networks. In this framework, conceptual inventory control loops are then designed for the mass and energy layers to guarantee that the states of the plant, both in terms of extensive and intensive properties, will converge to a compact convex region defined by constant inventories. This result by itself does not ensure the convergence of intensive variables to a desired operation point as complex dynamic phenomena such as multiplicities may appear in the invariant set. In order to avoid these phenomena, thermodynamics naturally provides the designer, in these convex regions, with a legitimate storage or Lyapunov function candidate, the entropy, that can be employed to ensure global stability. Based on this, the control structure design procedure is completed with the realization of the conceptual inventory and intensive variable control loops over the available degrees of freedom in the system. To that purpose, both PI and feedback linearization control are employed. The different aspects of the proposed methodology will be illustrated on a non-isothermal chemical reaction network.
Description15 pages, 23 figures.-- ESCAPE-15 - Selected Papers from the 15th European Symposium on Computer Aided Process Engineering held in Barcelona, Spain, May 29-June 1, 2005.-- Available online 26 December 2006.
Publisher version (URL)http://dx.doi.org/10.1016/j.compchemeng.2006.11.004
Appears in Collections:(IIM) Artículos
Files in This Item:
File Description SizeFormat 
Systematic_approach_plant-wide.pdf704,7 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.