Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94497
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorDe Anna, Pietro-
dc.contributor.authorLeborgne, Tanguy-
dc.contributor.authorTartakovsky, Alexandre M.-
dc.contributor.authorDentz, Marco-
dc.contributor.authorBolster, Diogo-
dc.date.accessioned2014-03-31T07:45:15Z-
dc.date.available2014-03-31T07:45:15Z-
dc.date.issued2012-06-
dc.identifier.citationXIX International Conference on Computational Methods in Water Resources (2012)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/94497-
dc.descriptionPonencia presentada en la XIX International Conference on Computational Methods in Water Resources (CMWR 2012), celebrad del 17 al 21 de junio de 2012 en la Universidad de Illinois.es_ES
dc.description.abstractNatural flow fields in porous media display a complex spatio - temporal organization due to heterogeneous geological struc tures at different scales. This multiscale disorder implies anomalous dispersion, mixing and reaction kinetics (Berkowitz et al. RG 2006, Tartakovsky PRE 2010). In this context, classical continuum models based on Fickian mixing may misrepresent reactive t ransport. Using two dimensional pore scale SPH numerical simulations of flow and transport, we demonstrate the non Gaussian nature and the long range temporal correlation of the Lagrangian velocity field. The main origin of these properties is the existenc e of very low velocity regions where solute particles can remain trapped for a long time. Another source of strong correlation is the channeling of flow in localized high velocity regions. Thus, this result questions the applicability of classical Langevin approaches f or modeling mixing and reaction kinetics. In order to define an effective upscaled model, we adopt a upscaled model that takes into account the statistical properties of the pore scale Lagrangian velocity field. Analyzing the pore scale statistical properties of the flow, we show the spatial Markovian, and temporal non Markovian, nature of the Lagrangian velocity field. Therefore, an upscaled model can be defined as a correlated Continuous Time Random Walk (Le Borgne et al. PRL 2008) in two dimension. This account for both non Gaussian velocity distribution and long range temporal correlation property. The key feature of this model is the definition of a transition probability density for Lagrangian velocities across a characteristic correlation distance. We quantify this transition probability density from pore scale simulations and use it in the effective random walk model. In this framework, we discuss the ability of this effective model to represent correctly dispersion, mixing and reaction kinetics.es_ES
dc.language.isoenges_ES
dc.publisherUniversity of Illinois at Urbana-Champaignes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/282900es_ES
dc.rightsclosedAccesses_ES
dc.titleUpscaling of transport in correlated non Gaussian velocity fields: consequences for modeling mixing and reactions in porous mediaes_ES
dc.typecomunicación de congresoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.openairetypecomunicación de congreso-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (IDAEA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

225
checked on 21-abr-2024

Download(s)

53
checked on 21-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.