English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94459
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Dynamics of perturbations in disordered chaotic systems

AutorSzendro, Ivan Georg; López, Juan M. ; Rodríguez, Miguel A.
Fecha de publicación2008
EditorAmerican Physical Society
CitaciónPhysical Review E 78: 036202 (2008)
ResumenWe study the time evolution of perturbations in spatially extended chaotic systems in the presence of quenched disorder. We find that initially random perturbations tend to exponentially localize in space around static pinning centers that are selected by the particular configuration of disorder. The spatiotemporal behavior of typical perturbations δu (x,t) is analyzed in terms of the Hopf-Cole transform h (x,t) ln δu (x,t). Our analysis shows that the associated surface h (x,t) self-organizes into a faceted structure with scale-invariant correlations. Scaling analysis of critical roughening exponents reveals that there are three different universality classes for error propagation in disordered chaotic systems that correspond to different symmetries of the underlying disorder. Our conclusions are based on numerical simulations of disordered lattices of coupled chaotic elements and equations for diffusion in random potentials. We propose a phenomenological stochastic field theory that gives some insights on the path for a generalization of these results for a broad class of disordered extended systems exhibiting space-time chaos. © 2008 The American Physical Society.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevE.78.036202
Identificadoresdoi: 10.1103/PhysRevE.78.036202
issn: 1539-3755
e-issn: 1550-2376
Aparece en las colecciones: (IFCA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Dynamics of perturbations.pdf1,77 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.