Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94371
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorSadhukhan, S.-
dc.contributor.authorGouze, Philippe-
dc.contributor.authorDentz, Marco-
dc.contributor.authorDutta, T.-
dc.date.accessioned2014-03-27T12:30:37Z-
dc.date.available2014-03-27T12:30:37Z-
dc.date.issued2012-04-
dc.identifier.citationEGU General Assembly (2012)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/94371-
dc.descriptionPóster presentado en la European Geosciences Union General Assembly, celebrada en Viena del 22 al 27 de abril de 2012.es_ES
dc.description.abstractMeshed models in which equations are solved assuming that constant effective macroscopic properties can be defined in each cells are essential tools for predicting reservoir properties changes triggered by mineral dissolution (or precipitation) due to CO2 injection. However, the parameterization of the dissolution–precipitation problem and their feedback effects on the flow field are still challenging. The problem arises from the mismatch between the scales at which averaged parameters and parameters relationships (such as the porosity-permeability heuristic relation) are defined and the scale at which chemical reactions occur according to the pore scale fluid concentration and flow heterogeneities and modify the pore network geometry. Here, we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the effective macroscopic value of the reactive surface area, permeability and diffusivity (or diffusional tortuosity) by means of numerical modeling at pore scale. The porous structure (pore space and mineral matrix) is spatially discretized in voxels. It is issued from either numerical generation or from processed X-ray microtomography images. Flow, reactant transport and matrix dissolution is modeled by solving iteratively the Stokes equation with no-slip boundary condition at the rock-pore interface and the advection-diffusion equation using Time Domain Random Walk (TDRW). In the examples presented here, the reaction is a first order kinetic dissolution reaction which allows a simple parameterization of the problem using the average Peclet and the Damkohler numbers characterizing the local diffusion-to-advection and the reaction-toadvection characteristic times. Depending on these parameters that are related to the reactant concentration, the reaction kinetic and the macroscopic pressure drop across the domain, effective relations between the porosity, permeability and diffusivity are obtained, showing a large range of behavior that can be directly compared to those obtained from laboratory scale experiments. The results emphasize the large influence of the initial heterogeneity. In the case of heterogeneous dissolution, i.e. when mass transfer localization occurs and heterogeneity is created by the dissolution itself (for example for high Da values) the effective parameters are scale dependent and cannot be used directly in macroscale models.es_ES
dc.language.isoenges_ES
dc.publisherEuropean Geosciences Uniones_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/282900es_ES
dc.rightsclosedAccesses_ES
dc.titleMultiscale modeling of porosity, permeability, diffusivity and reactive surface changes during dissolutiones_ES
dc.typepóster de congresoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6670es_ES
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypepóster de congreso-
item.cerifentitytypePublications-
item.grantfulltextnone-
Aparece en las colecciones: (IDAEA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

359
checked on 24-abr-2024

Download(s)

56
checked on 24-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.