English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/9416
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 63 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Dynamics of one-state downhill protein folding

Autor Peng, Li ; Oliva, Fabiana Y.; Naganathan, Athi N. ; Muñoz van den Eynde, Víctor
Palabras clave Downhill folding
Folding landscape
Landscape topography
Protein dynamics
Biophysics
Fecha de publicación 31-dic-2008
EditorNational Academy of Sciences (U.S.)
Citación Proc. Natl. Acad. Sci. USA, DOI 10.1073/pnas.0802986106
ResumenThe small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.
Descripción Supporting information (12 pages) available at: http://www.pnas.org/content/suppl/2008/12/31/0802986106.DCSupplemental/0802986106SI.pdf
Published online before print December 31, 2008.
Versión del editorhttp://dx.doi.org/10.1073/pnas.0802986106
URI http://hdl.handle.net/10261/9416
DOI10.1073/pnas.0802986106
ISSN0027-8424
Aparece en las colecciones: (CIB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.