English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/94107
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction

AutorOrtín González, Silvia ; Gutiérrez, José M. ; Pesquera, Luis ; Pesquera, Luis ; Vasquez, Hernando
Palabras claveFunctional networks
Neural networks
Delayed chaotic systems
Fecha de publicación2005
CitaciónPhysica A: Statistical Mechanics and its Applications 351(1): 133-141 (2005)
ResumenIt is shown that the nonlinear dynamics of chaotic time-delay systems can be reconstructed using a new type of neural network with two modules: one for nonfeedback part with input data delayed by the embedding time, and a second one for the feedback part with input data delayed by the feedback time. The method is applied to both simulated and experimental data from an electronic analog circuit of the Mackey–Glass system. Better results are obtained for the modular than for feedforward neural networks for the same number of parameters. It is found that the complexity of the neural network model required to reconstruct nonlinear dynamics does not increase with the delay time. Synchronization between the data and the model with diffusive coupling is also achieved. We have also shown by iterating the model from the present point that the dynamics can be predicted with a forecast horizon larger than the feedback delay time.
Identificadoresdoi: 10.1016/j.physa.2004.12.015
issn: 0378-4371
Aparece en las colecciones: (IFCA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.