English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/93979
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Data quality improvements for satellite sea surface salinity data

Autor Aretxabaleta, Alfredo L. ; Gourrion, Jérôme ; Guimbard, Sébastien ; Sabia, Roberto ; Gabarró, Carolina ; González, Verónica ; Martínez, Justino ; Font, Jordi
Fecha de publicación 20-feb-2012
Citación 2012 Ocean Sciences Meeting. Abstract book: 15 (2012)
ResumenThe recently available SMOS sea surface salinity (SSS) exhibits areas of increased measurement error (associated with land contamination, RFI, auxiliary wind product deficiencies, external noise or instrument inaccuracies). In this study, we present some of the strategies developed at the SMOS-BEC to improve SSS data quality. Ocean Target Transformation (OTT) is used in the operational Level 2 processor. Three conflicting factors impact its efficiency: 1) the number of observations used to compute the OTT (more data increase robustness); 2) the apparent instrument (temporal) drift (requiring periodic OTT updates); and 3) the effect of latitudinal variation (suggesting the need for spatial OTT filtering). We propose several palliative procedures for OTT deficiency mitigation. Additionally, we present an updated sea surface roughness formulation based on retrieved SMOS data. The dependencies with incidence angle and several roughness-related parameters (wind speed, mean square slope, significant wave height, wave age, wind stress) are considered in the improved approach. We also introduce a method for optimal multi-regime estimation of missing data (zones of too large error). First, by combining data from moored stations (TAO/TRITON) with model results (ECCO-JPL) treated as synthetic data, we achieve improved quality predictions. Then, the method is used to fill areas that have been flagged as having too large errors while preserving the non-Gaussian character of the SSS data
Descripción 2012 Ocean Sciences Meeting, 20-24 February 2012, Salt Lake City, Utah, USA
Versión del editorhttp://www.sgmeet.com/osm2012/
URI http://hdl.handle.net/10261/93979
Aparece en las colecciones: (ICM) Comunicaciones congresos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.