English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/92905
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 37 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing - application to feedforward convnets

Autor Perez-Carrasco, J. A.; Zhao, Bo; Serrano, C.; Acha Piñero, Begoña; Serrano-Gotarredona, Teresa ; Chen, Shoushun; Linares-Barranco, Bernabé
Fecha de publicación 2013
EditorInstitute of Electrical and Electronics Engineers
Citación IEEE Transactions on Pattern Analysis and Machine Intelligence 35(11): 2706-2719 (2013)
ResumenEvent-driven visual sensors have attracted interest from a number of different research communities. They provide visual information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given 'frame rate.' Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something meaningful is happening, without any notion of a frame. A special type of event-driven sensor is the so-called dynamic vision sensor (DVS) where each pixel computes relative changes of light or 'temporal contrast.' The sensor output consists of a continuous flow of pixel events that represent the moving objects in the scene. Pixel events become available with microsecond delays with respect to 'reality.' These events can be processed 'as they flow' by a cascade of event (convolution) processors. As a result, input and output event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful events. In this paper, we present a methodology for mapping from a properly trained neural network in a conventional frame-driven representation to an event-driven representation. The method is illustrated by studying event-driven convolutional neural networks (ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The event-driven ConvNet is fed with recordings obtained from a real DVS camera. The event-driven ConvNet is simulated with a dedicated event-driven simulator and consists of a number of event-driven processing modules, the characteristics of which are obtained from individually manufactured hardware modules. © 1979-2012 IEEE.
URI http://hdl.handle.net/10261/92905
DOI10.1109/TPAMI.2013.71
Identificadoresdoi: 10.1109/TPAMI.2013.71
issn: 0162-8828
e-issn: 1939-3539
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.