English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/92905
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing - application to feedforward convnets

AuthorsPerez-Carrasco, J. A.; Zhao, Bo; Serrano, C.; Acha Piñero, Begoña; Serrano-Gotarredona, Teresa ; Chen, Shoushun; Linares-Barranco, Bernabé
Issue Date2013
PublisherInstitute of Electrical and Electronics Engineers
CitationIEEE Transactions on Pattern Analysis and Machine Intelligence 35(11): 2706-2719 (2013)
AbstractEvent-driven visual sensors have attracted interest from a number of different research communities. They provide visual information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given 'frame rate.' Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something meaningful is happening, without any notion of a frame. A special type of event-driven sensor is the so-called dynamic vision sensor (DVS) where each pixel computes relative changes of light or 'temporal contrast.' The sensor output consists of a continuous flow of pixel events that represent the moving objects in the scene. Pixel events become available with microsecond delays with respect to 'reality.' These events can be processed 'as they flow' by a cascade of event (convolution) processors. As a result, input and output event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful events. In this paper, we present a methodology for mapping from a properly trained neural network in a conventional frame-driven representation to an event-driven representation. The method is illustrated by studying event-driven convolutional neural networks (ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The event-driven ConvNet is fed with recordings obtained from a real DVS camera. The event-driven ConvNet is simulated with a dedicated event-driven simulator and consists of a number of event-driven processing modules, the characteristics of which are obtained from individually manufactured hardware modules. © 1979-2012 IEEE.
URIhttp://hdl.handle.net/10261/92905
DOIhttp://dx.doi.org/10.1109/TPAMI.2013.71
Identifiersdoi: 10.1109/TPAMI.2013.71
issn: 0162-8828
e-issn: 1939-3539
Appears in Collections:(IMSE-CNM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.