English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/92712
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 15 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes.

Autor Delgado, D.; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, M.
Fecha de publicación 28-mar-2011
EditorOxford University Press
Citación Annals of Botany 107: 1247-1258 (2011)
ResumenBackground and Aims: Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development. © The Author 2011. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.
URI http://hdl.handle.net/10261/92712
DOI10.1093/aob/mcr060
Identificadoresdoi: 10.1093/aob/mcr060
issn: 0305-7364
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.