English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/92272
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Plasmon blockade in nanostructured graphene

AuthorsManjavacas, Alejandro ; Nordlander, Peter; García de Abajo, Francisco Javier
Issue Date2012
PublisherAmerican Chemical Society
CitationACS Nano 6(2): 1724-1731 (2012)
AbstractAmong the many extraordinary properties of graphene, its optical response allows one to easily tune its interaction with nearby molecules via electrostatic doping. The large confinement displayed by plasmons in graphene nanodisks makes it possible to reach the strong-coupling regime with a nearby quantum emitter, such as a quantum dot or a molecule. In this limit, the quantum emitter can introduce a significant plasmon-plasmon interaction, which gives rise to a plasmon blockade effect. This produces, in turn, strongly nonlinear absorption cross sections and modified statistics of the bosonic plasmon mode. We characterize these phenomena by studying the equal-time second-order correlation function g (2)(0), which plunges below a value of 1, thus revealing the existence of nonclassical plasmon states. The plasmon-emitter coupling, and therefore the plasmon blockade, can be efficiently controlled by tuning the doping level of the graphene nanodisks. The proposed system emerges as a new promising platform to realize quantum plasmonic devices capable of commuting optical signals at the single-photon/plasmon level. © 2012 American Chemical Society.
URIhttp://hdl.handle.net/10261/92272
DOI10.1021/nn204701w
Identifiersdoi: 10.1021/nn204701w
issn: 1936-0851
e-issn: 1936-086X
Appears in Collections:(IQFR) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.