English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/91915
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 6 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Optimising SCImago Journal & Country Rank classification by community detection

Autor Gómez-Núñez, Antonio Jesús ; Batagelj, Vladimir; Vargas-Quesada, Benjamín; Moya Anegón, Félix de ; Chinchilla-Rodríguez, Zaida
Palabras clave Community detection
Clustering
SCImago Journal & Country Rank
Journal classification
Citation-based network
Fecha de publicación 2014
EditorElsevier
Citación Journal of Informetrics 8(2): 369–383 (2014)
Resumen[EN] Subject classification arises as an important topic for bibliometrics and scientometrics as to develop reliable and consistent tools and outputs. For this matter, a well delimited underlying subject classification scheme reflecting science fields becomes essential. Within the broad ensemble of classification techniques clustering analysis is one of the most successful. Two clustering algorithms based on modularity, namely, VOS and Louvain methods, are presented in order to update and optimise journal classification of SCImago Journal & Country Rank (SJR) platform. We used network analysis and visualization software Pajek to run both algorithms on a network of more than 18,000 SJR journals combining three citation-based measures, that is, direct citation, co-citation and bibliographic coupling. The set of clusters obtained was termed through category labels assigned to SJR journals and significant words from journal titles. Despite of both algorithms exhibiting slight performance differences, the results showed a similar behaviour in grouping journals and, consequently, they seem to be appropriate solutions for classification purposes. The two new generated algorithm-based classifications were compared to other bibliometric classification systems such as the original SJR one and WoS Subject Categories in order to validate their consistency, adequacy and accuracy. Although there are notable differences among the four classification systems analysed, we found a certain coherence and homogeneity among them.
Descripción Gómez-Núñez, Antonio J., Batagelj, Vladimir, Vargas-Quesada, Benjamín, Moya-Anegón, Félix, Chinchilla-Rodríguez, Zaida (2014). Optimising SCImago Journal & Country Rank classification by community detection. Journal of Informetrics, 8 (2), 369-383. http://dx.doi.org/10.1016/j.joi.2014.01.011
Versión del editorhttp://dx.doi.org/10.1016/j.joi.2014.01.011
URI http://hdl.handle.net/10261/91915
DOI10.1016/j.joi.2014.01.011
ISSN1751-1577
Aparece en las colecciones: (CCHS-IPP) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Optimising SCImago Journal & Country Rank classification by community detection-preprint.pdf412,88 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.