Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/9175
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Properties of some conformal field theories with M-theory duals

AuthorsGauntlett, Jerome P.; O'Colgain, Eoin; Varela, Óscar
KeywordsAdS-CFT correspondence
M-Theory
Issue Date16-Feb-2007
PublisherInternational School for Advanced Studies
Institute of Physics Publishing
CitationJournal of High Energy Physics 2: 049 (2007)
JHEP02(2007)049
AbstractBy studying classes of supersymmetric solutions of D = 11 supergravity with AdS(5) factors, we determine some properties of the dual four-dimensional N = 1 super-conformal field theories. For some explicit solutions we calculate the central charges and also the conformal dimensions of certain chiral primary operators arising from wrapped membranes. For the most general class of solutions we show that there is a consistent Kaluza-Klein truncation to minimal D = 5 gauged supergravity. This latter result allows us to study some aspects of the dual strongly coupled thermal plasma with a non-zero R-charge chemical potential and, in particular, we show that the ratio of the shear viscosity to the entropy density has the universal value of 1/4π.
Description24 pages.-- ISI Article Identifier: 000245078200049.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0611219
Publisher version (URL)http://dx.doi.org/10.1088/1126-6708/2007/02/049
URIhttp://hdl.handle.net/10261/9175
DOI10.1088/1126-6708/2007/02/049
ISSN1126-6708
Appears in Collections:(IFIC) Artículos

Files in This Item:
File Description SizeFormat
jhep022007049.pdf287,96 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

SCOPUSTM   
Citations

60
checked on Jan 17, 2022

WEB OF SCIENCETM
Citations

52
checked on Jan 24, 2022

Page view(s)

379
checked on Jan 25, 2022

Download(s)

234
checked on Jan 25, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.