English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/9094
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 23 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

The Extended Cartan Homotopy Formula and a subspace separation method for Chern-Simons theory

Autor Izaurieta, Fernando; Rodríguez, Eduardo; Salgado, Patricio
Palabras clave Chern–Simons theories
Field theories in higher dimensions
Supersymmetric gauge theories
Fecha de publicación 20-mar-2007
EditorSpringer
Citación Letters in Mathematical Physics 80(2): 127-138 (2007)
ResumenIn the context of Chern-Simons (CS) Theory, a subspace separation method for the Lagrangian is proposed. The method is based on the iterative use of the Extended Cartan Homotopy Formula, and allows one to (1) separate the action in bulk and boundary contributions, and (2) systematically split the Lagrangian in appropriate reflection of the subspace structure of the gauge algebra. In order to apply the method, one must regard CS forms as a particular case of more general objects known as transgression forms. Five-dimensional CS Supergravity is used as an example to illustrate the method.
Descripción 12 pages, 1 figure.-- MSC codes: 57R20, 70S15, 81T60.-- ISI Article Identifier: 000246408200003.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0603061
Printed version published in May 2007.
Versión del editorhttp://dx.doi.org/10.1007/s11005-007-0148-0
URI http://hdl.handle.net/10261/9094
DOI10.1007/s11005-007-0148-0
ISSN0377-9017 (Print)
1573-0530 (Online)
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0603061v2.pdf198,69 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.