English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/90565
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Generation of the Cape Ghir upwelling filament: A numerical study

AuthorsTroupin, Charles; Mason, Evan ; Beckers, Jean-Marie; Sangrà, Pablo
KeywordsROMS model
Potential vorticity
Upwelling filaments
Canary upwelling system
Eastern boundary
ROMS
Issue Date2012
PublisherElsevier
CitationOcean Modelling 41: 1-15 (2012)
AbstractFilaments are narrow, shallow structures of cool water originating from the coast. They are typical features of the four main eastern boundary upwelling systems (EBUS). In spite of their significant biological and chemical roles, through the offshore exportation of nutrient-rich waters, the physical processes that generate them are still not completely understood. This paper is a process-oriented study of filament generation mechanisms. Our goal is twofold: firstly, to obtain a numerical solution able to correctly represent the characteristics of the filament off Cape Ghir (30°38′N, northwest Africa) in the Canary EBUS and secondly, to explain its formation by a simple mechanism based on the balance of potential vorticity.The first goal is achieved by the use of the ROMS model (Regional Ocean Modeling System) with embedded domains around Cape Ghir, with a horizontal resolution going up to 1.5. km for the finest domain. The latter gets its initial and boundary conditions from a parent solution and is forced by climatological, high-resolution atmospheric fields. The modeled filaments display spatial, temporal and physical characteristics in agreement with the available in situ and satellite observations. This model solution is used as a reference to compare the results with a set of process-oriented experiments. These experiments allow us to reach the second objective. The solutions serve to highlight the contributions of various processes on the filament generation. Since the study is focused on general processes present under climatological forcing conditions, inter-annual forcing is not necessary.The underlying idea for the filament generation is the balance of potential vorticity in the Canary EBUS: the upwelling jet is characterized by negative relative vorticity and flows southward along a narrow band of uniform potential vorticity. In the vicinity of the cape, an injection of relative vorticity induced by the wind breaks the existing vorticity balance. The upwelling jet is prevented from continuing its way southward and has to turn offshore to follow lines of equal potential vorticity.The model results highlight the essential role of wind, associated with the particular topography (coastline and bottom) around the cape. The mechanism presented here is general and thus can be applied to other EBUS. © 2011 Elsevier Ltd.
Description15 pages, 9 figures, 2 tables
Publisher version (URL)http://dx.doi.org/10.1016/j.ocemod.2011.09.001
URIhttp://hdl.handle.net/10261/90565
DOI10.1016/j.ocemod.2011.09.001
Identifiersdoi: 10.1016/j.ocemod.2011.09.001
issn: 1463-5003
Appears in Collections:(ICM) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.