English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/90218
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data

AutorLópez-Lineros, M.; Estévez, J.; Giráldez, Juan Vicente ; Madueño, A.
Palabras claveValidation
Quality control
Non-linear autoregressive neural networks
River stage data
Fecha de publicación14-mar-2014
CitaciónJournal of Hydrology 510: 103-109 (2014)
ResumenThe main purpose of this work is the develop of a new quality control method based on non-linear autoregressive neural networks (NARNN) for validating hydrological information, more specifically of 10-min river stage data, for automatic detection of incorrect records. To assess the effectiveness of this new approach, a comparison with adapted conventional validation tests extensively used for hydro-meteorological data was carried out. Different parameters of NARNN and their stability were also analyzed in order to select the most appropriate configuration for obtaining the optimal performance. A set of errors of different magnitudes was artificially introduced into the dataset to evaluate detection efficiency. The NARNN method detected more than 90% of altered records, when the magnitude of error introduced was very high, while conventional tests detected only around 13%. In addition, the NARNN method maintained a similar efficiency at the intermediate and lower error ratios, while the conventional tests were not able to detect more than 6% of erroneous data. © 2013.
Identificadoresdoi: 10.1016/j.jhydrol.2013.12.026
issn: 0022-1694
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.