English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/89891
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Physisorption of helium on a TiO2(110) surface: periodic and finite clusters approaches

AutorAguirre, Néstor F. ; Mateo, D.; Pi, Martí; Mitrushchenkov, Alexander O. ; Lara Castells, María Pilar de
Fecha de publicación19-jun-2011
EditorCSIC - Instituto de Física Fundamental (IFF)
CitaciónIBER 2011; 11th Iberian Joint Meeting on Atomic and Molecular Physics, 19-22 June 2011 Coimbra, PORTUGAL
ResumenAs a proto-typical case of physisorption on an extended transition-metal oxide surface, the interaction of a helium atom with a TiO2(110) surface is studied here by using finite cluster and periodic approaches and both wavefunction-based (post Hartree-Fock) quantum chemistry methods, as well as density functional theory [1]. The finite cluster approach is applied to provide reference results at coupled-cluster and perturbative second-order Möller-Plesset levels of theory. It is shown that once the basis set is specifically tailored to minimize the basis set superposition error, periodic calculations using the Perdew Burke-Ernzerhof functional yield short and medium-range interaction potentials in very reasonable agreement with those obtained using the correlated wave-function-based methods, while small long-range dispersion corrections are necessary to reproduce the correct asymptotic behavior. This study is aimed at the simulation of helium droplet-mediated deposition of metallic clusters on oxide surfaces.
Aparece en las colecciones: (CFMAC-IFF) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
403582.null3,63 MBUnknownVisualizar/Abrir
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.