English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/89832
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título

Nonstationary time series convolution: on the relation between the Hilbert–Huang and Fourier transform

Autor Neukirch, Mail ; García, Xavier
Palabras clave Nonstationary
Hilbert–Huang transform
Fourier transform
convolution
time series
Fecha de publicación ene-2013
EditorWorld Scientific Publishing
Citación Advances in Adaptive Data Analysis 5(1) (2013)
ResumenThe Hilbert-Huang Transform (HHT) decomposes time series into intrinsic mode functions (IMF) in time-frequency domain. We show that time slices of IMFs equal time slices of Fourier series, where the instantaneous parameters of the IMF define the parameters amplitude and phase of the Fourier series. This leads to the formulation of the theorem that nonstationary convolution of an IMF with a general time domain response function translates into a multiplication of the IMF with the respective spectral domain response function which is explicitly permitted to vary over time. We conclude and show on a real world application that a de-trended signal's IMFs can be convolved independently and then be used for further time-frequency analysis. Finally, a discussion is opened on parallels in HHT and the Fourier transform with respect to the time-frequency domain
Descripción 13 pages, 4 figures
Versión del editorhttp://dx.doi.org/10.1142/S1793536913500040
URI http://hdl.handle.net/10261/89832
DOI10.1142/S1793536913500040
Identificadoresdoi: 10.1142/S1793536913500040
issn: 1793-5369
e-issn: 1793-7175
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.